

香港中文大學(深圳) 数据科学学院 The Chinese University of Hong Kong, Shenzhen School of Data Science

A Review: Singing Voice Conversion with Non-Parallel Data

Xueyao Zhang

Human Language Technology Lab (HLT), CUHK-SZ

- Background
- Challenges
- Review of the Existing Works
- Our Future Work

• Background

- Problem definition
- Applications and user scenarios
- Challenges
- Review of the Existing Works
- Our Future Work

Problem: Voice Conversion & Singing Voice Conversion

- Voice Conversion (VC)
 - VC is a technique to modify speech waveform to convert non-para-linguistic information while preserving linguistic information. [1]
- Singing Voice Conversion (SVC)
 - SVC make it possible for a singer to sing a song with the desired voice timbre beyond their own physical constraints. [2]
 - SVC make it possible to convert a source singer's singing voice into another target singer's singing voice. [2]

[1] Tomoki Toda. Recent Progress on Voice Conversion: What is Next? 2021. **Differential**. InterSpeech 2014.

[2] Kazuhiro Kobayashi, Tomoki Toda, et al. Statistical Singing Voice Conversion with Direct Waveform Modification based on the Spectrum

Problem: Singing Voice Conversion with Non-Parallel Data

• Parallel data:

There exists the (source audio, desired audio) pair.

Converse the source singing voice to one containing more *chest resonance* for increasing your singing's power — Jiawei Li

[1] Chao Wang, et al. Towards High-Fidelity Singing Voice Conversion with Acoustic Reference and Contrastive Predictive Coding. InterSpeech 2022.
[2] Heyang Xue, et al. Learn2Sing 2.0: Diffusion and Mutual Information-Based Target Speaker SVS by Learning from Singing Teacher. InterSpeech 2022.

Source Reference

Conversion Result [1]

• Non-parallel cross domain data:

Source

Reference

Conversion Result [2]

Application and User Scenarios

Imitation and Entertainment

Impression Show to various singers — Taking 姐就是女王 as an example

Singing Voice Beautification

Tone Tuning

Application and User Scenarios

Music Montage (Michael Jackson feat. 曲比阿乌)

Creative Art

A novel morphing singing technique (merging *Pop* and *Folk*) of Jian Li.

- Background
- Challenges
 - Paradigm of the conversion framework
 - Three main challenges
- Review of the Existing Works
- Our Future Work

Paradigm of the conversion framework

Paradigm of the conversion framework

[1] Xin Chen, et al. Singing Voice Conversion with Non-parallel Data. IEEE MIPR 2019. [2] Masanori Morise, et al. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Trans. Inf. Syst. 2016

Paradigm of the conversion framework

Eliya Nachmani, et al. Unsupervised Singing Voice Conversion. InterSpeech 2019.

11

Three Main Challenges

Three main challenges:

- (1) How to extract the **singer independent** features (i.e. **content info**)?
- (2) How to model the **singer dependent** characteristics (i.e. **singer info**)?
- ③ How to make the general framework special to singing voice (i.e. to introduce domain prior knowledge)?

- Background
- Challenges
- **Review of the Existing Works**
 - To model the singer independent features (3 papers chosen)
 - To model the singer dependent characteristics (2 papers chosen)
 - To introduce the domain prior knowledge (3 papers chosen)
- Our Future Work

(1/3) Phonetic Posteriorgrams (PPG) as singer independent features

Content Info

Singer Info

(1) PPG features Singer independent musical/acoustic info (2)

Singer Embedding

Zhonghao Li, et al. PPG-Based Singing Voice Conversion with Adversarial Representation Learning. ICASSP 2021.

Special to Singing Voice

Extract musical content from Mel Spectrograms

(2/3) Low quefrencies of MFCC as singer independent features

Ying Zhang, et al. K-Converter: An Unsupervised Singing Voice Conversion System. ICASSP 2022.

Special to Singing Voice

Low quefrencies of MFCC affects the linguistic info, while high quefrencies affects the F0 and the harmonics

15

(3/3) Learn singer independent Acoustic info from Linguistic info

Jordi Bonada, et al. Semi-supervised Learning for Singing Synthesis Timbre. ICASSP 2021.

Special to Singing Voice

The paper gives an answer to "how to utilize the singing" voice data which has well-aligned score with lyrics".

- Background
- Challenges
- Review of the Existing Works
 - To model the singer independent features (3 papers chosen)
 - To model the singer dependent characteristics (2 papers chosen)
 - To introduce the domain prior knowledge (3 papers chosen)
- Our Future Work

17

(1/2) IN/AdaIN for removing/capturing singer characteristics

Representations after hierarchical Instance Special to Singing Voice Normalization (IN) Content Info Pitch and Loudness The hierarchical framework can capture fine-grained singer characteristics at different granularity. Singer Info **Temporal statistics in every IN**

Xu Li, et al. A Hierarchical Speaker Representation Framework for One-shot Singing Voice Conversion. InterSpeech 2022.

(2/2) Divide the singer characteristics into Timbre and Singing Style

Juheon Lee et al. Disentangling Timbre and Singing Style with Multi-Singer Singing Synthesis System. ICASSP 2020.

- Background
- Challenges
- **Review of the Existing Works**
 - To model the singer independent features (3 papers chosen)
 - To model the singer dependent characteristics (2 papers chosen)
 - To introduce the domain prior knowledge (3 papers chosen)
- Our Future Work

(1/3) Enhance the modeling for Pitch

Chengqi Deng et al. PitchNet: Unsupervised Singing Voice Conversion with Pith Adversarial Network. ICASSP 2020.

Content Info

Pitch curve Singer independent representations

Singer Info

Singer Embedding

Special to Singing Voice

Pitch is a very strong feature for singing voice!

Source

Baseline

PitchNet

(2/3) Enhance the modeling for Harmonic Signals

Special to Singing Voice

Harmonic signals matters a lot for the smoothness and continuity of audio.

MelGAN	MelGAN w/ Harmonic Signals	PWG	PWG w/ Harmonic Signals
	Harmonic Signals		Harmonic Signals

Haohan Guo et al. Improving Adversarial Waveform Generation Based Singing Voice Conversion with Harmonic Signals. ICASSP 2022.

(3/3) Enhance the modeling for Timbre

Tae-Woo Kim et al. Adversarial Multi-Task Learning for Disentangling Timbre and Pitch in Singing Voice Synthesis. InterSpeech 2022.

- Background
- Challenges
- Review of the Existing Works
- Our Future Work
 - Promising directions
 - Our next step

Promising directions

- ♦ Well-organized evaluation
- ✦ Explorations for singer dependent characteristics
- ♦ More flexible and general conversion problems
- ♦ More sufficient modeling for music domain knowledge, such as:
 - Duration-Lyrics(-Pitch) alignment info
 - Music theory knowledge (for more flexible conversion)
 - Singing knowledge for different genres

An example of *Bel Canto*

Source Conversion with a slightly altered score

香港中文大學(深圳) 数据科学学院 The Chinese University of Hong Kong, Shenzhen School of Data Science

THANKS